4,063 research outputs found

    GRAIL – Grid Access and Instrumentation Tool

    Get PDF
    Since the release of Globus Toolkit 4 Web services enrich the world of Grid Computing. They provide methods to develop modular Grid applications which can be parallelized easily. The access to Web services is mostly solved by complex command line tools which need a good deal of knowledge of the underlaying Grid technologies. GRAIL is intended to fill the gap between existing Grid access methods and both the developer who wants to utilize the Grid for own developments and the user who wants to access the Grid without much additional knowledge. It simplifies the access and the testing of Web services for the Globus Grid middleware. GRAIL provides an easy to use graphical user interface for executing Web services and enables the user to construct complex relationships between services to realize parallel execution. The underlying framework allows an easy integration of any Web service or other arbitrary task without much additional effort for the developer. Existing technologies, shipped with the Globus Toolkit, are seamlessly integrated into GRAIL

    Cluster magnetic fields from active galactic nuclei

    Full text link
    Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.Comment: 4 pages, 2 figures, submitted to conference proceedings "The Monster's Fiery Breath: Feedback in Groups, Galaxies, and Clusters

    The Influence of AGN Feedback on Galaxy Cluster Observables

    Full text link
    Galaxy clusters are valuable cosmological probes. However, cluster mass estimates rely on observable quantities that are affected by complicated baryonic physics in the intracluster medium (ICM), including feedback from active galactic nuclei (AGN). Cosmological simulations have started to include AGN feedback using subgrid models. In order to make robust predictions, the systematics of different implementations and parametrizations need to be understood. We have developed an AGN subgrid model in FLASH that supports a few different black hole accretion models and feedback models. We use this model to study the effect of AGN on X-ray cluster observables and its dependence on model variations.Comment: minor error corrected, to appear in proceedings of the conference "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters", June 2009, Madison, Wisconsi

    A response to arXiv:1310.2791: A self-consistent public catalogue of voids and superclusters in the SDSS Data Release 7 galaxy surveys

    Full text link
    Recently, Nadathur & Hotchkiss (2013) submitted a paper discussing a new cosmic void catalog. This paper includes claims about the void catalog described in Sutter et al. (2012). In this note, we respond to those claims, clarify some discrepancies between the text of Sutter et al. (2012) and the most recent version of the catalog, and provide some comments on the differences between our catalog and that of Nadathur & Hotchkiss (2013). All updates and documentation for our catalog are available at http://www.cosmicvoids.net.Comment: 3 pages, 1 figure, public catalog available at http://www.cosmicvoids.ne

    Response to reflected-force feedback to fingers in teleoperations

    Get PDF
    Reflected-force feedback is an important aspect of teleoperations. The objective is to determine the ability of the human operator to respond to that force. Telerobotics operation is simulated by computer control of a motor-driven device with capabilities for programmable force feedback and force measurement. A computer-controlled motor drive is developed that provides forces against the fingers as well as (angular) position control. A load cell moves in a circular arc as it is pushed by a finger and measures reaction forces on the finger. The force exerted by the finger on the load cell and the angular position are digitized and recorded as a function of time by the computer. Flexure forces of the index, long and ring fingers of the human hand in opposition to the motor driven load cell are investigated. Results of the following experiments are presented: (1) Exertion of maximum finger force as a function of angle; (2) Exertion of target finger force against a computer controlled force; and (3) Test of the ability to move to a target force against a force that is a function of position. Averaged over ten individuals, the maximum force that could be exerted by the index or long finger is about 50 Newtons, while that of the ring finger is about 40 Newtons. From the tests of the ability of a subject to exert a target force, it was concluded that reflected-force feedback can be achieved with the direct kinesthetic perception of force without the use of tactile or visual clues

    A measurement of the Alcock-Paczynski effect using cosmic voids in the SDSS

    Full text link
    We perform an Alcock-Paczynski test using stacked cosmic voids identified in the SDSS Data Release 7 main sample and Data Release 10 LOWZ and CMASS samples. We find ~1,500 voids out to redshift 0.60.6 using a heavily modified and extended version of the watershed algorithm ZOBOV, which we call VIDE (Void IDentification and Examination). To assess the impact of peculiar velocities we use the mock void catalogs presented in Sutter et al. (2013). We find a constant uniform flattening of 14% along the line of sight when peculiar velocities are included. This flattening appears universal for all void sizes at all redshifts and for all tracer densities. We also use these mocks to identify an optimal stacking strategy. After correcting for systematic effects we find that our Alcock-Paczynski measurement leads to a preference of our best-fit value of ΩM0.15\Omega_{\rm M}\sim 0.15 over ΩM=1.0\Omega_{\rm M} = 1.0 by a likelihood ratio of 10. Likewise, we find a factor of 4.54.5 preference of the likelihood ratio for a Λ\LambdaCDM ΩM=0.3\Omega_{\rm M} = 0.3 model and a null measurement. Taken together, we find substantial evidence for the Alcock-Paczynski signal in our sample of cosmic voids. Our assessment using realistic mocks suggests that measurements with future SDSS releases and other surveys will provide tighter cosmological parameter constraints. The void-finding algorithm and catalogs used in this work will be made publicly available at http://www.cosmicvoids.net.Comment: 8 pages, 4 figures, 2 tables, MNRAS accepte

    Family Versus Public Solidarity: Theory and Experiment

    Get PDF
    We present an overlapping generations model with two families who can guarantee old age support either by intra-family transfers from child to parent or via a tax-financed public pension system encompassing both families.We derive the individually and family-specific optimal decisions and present some more behavioristic hypotheses.Our experimental observations allow conclusions on (1) whether raising taxes crowds out voluntary transfers, (2) how income distributions influence family and public solidarity, and (3) whether participants prefer more to less public solidarity.voting;pensions;families;overlapping generations

    Sparse sampling, galaxy bias, and voids

    Full text link
    To study the impact of sparsity and galaxy bias on void statistics, we use a single large-volume, high-resolution N-body simulation to compare voids in multiple levels of subsampled dark matter, halo populations, and mock galaxies from a Halo Occupation Distribution model tuned to different galaxy survey densities. We focus our comparison on three key observational statistics: number functions, ellipticity distributions, and radial density profiles. We use the hierarchical tree structure of voids to interpret the impacts of sampling density and galaxy bias, and theoretical and empirical functions to describe the statistics in all our sample populations. We are able to make simple adjustments to theoretical expectations to offer prescriptions for translating from analytics to the void properties measured in realistic observations. We find that sampling density has a much larger effect on void sizes than galaxy bias. At lower tracer density, small voids disappear and the remaining voids are larger, more spherical, and have slightly steeper profiles. When a proper lower mass threshold is chosen, voids in halo distributions largely mimic those found in galaxy populations, except for ellipticities, where galaxy bias leads to higher values. We use the void density profile of Hamaus et al. (2014) to show that voids follow a self-similar and universal trend, allowing simple translations between voids studied in dark matter and voids identified in galaxy surveys. We have added the mock void catalogs used in this work to the Public Cosmic Void Catalog at http://www.cosmicvoids.net.Comment: 11 pages, 7 figures, MNRAS accepted. Minor changes from previous version. Public catalog available at http://www.cosmicvoids.ne
    corecore